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Abstract

Background Gastroesophageal junction adenocarcinoma (GEJAC) exhibits distinct molecular characteristics due to its
unique anatomical location. We sought to investigate effective and reliable molecular classification of GEJAC to guide
personalized treatment.

Methods We analyzed the whole genomic, transcriptomic, T-cell receptor repertoires, and immunohistochemical data in 92
GEJAC patients and delineated the landscape of genetic and immune alterations. In addition to COSMIC nomenclature, the
de novo nomenclature was also utilized to define signatures and investigate their correlation with survival. A novel molecular
subtype was developed and validated in other cohorts.

Results We found 30 mutated driver genes, 7 novel genomic signatures, 3 copy-number variations, and 2 V-J gene usages
related to prognosis that were not identified in previous study. A high frequency of COSMIC-SBS-384-1 and De novo-
SV-32-A was associated with more neoantigen generation and a better survival. Using 19 molecular features, we identified
three immune-related subtypes (immune inflamed, intermediate, and deserted) with discrete profiles of genomic signatures,
immune status, and clinical outcome. The immune deserted subtype (27.2%) was characterized by an earlier KRAS mutation,
worse immune reaction, and prognosis than the other two subtypes. The immune inflamed subtypes exhibited the highest
levels of neoantigens, TCR/pMHC-binding strength, CD8 + T-cell infiltration, IFN-a/y response pathways, and survival rate.
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Conclusions These results emphasize the immune reaction and prognostic value of novel molecular classifications based on
multi-omics data and provide a solid basis for better management of GEJAC.

Graphical abstract

Multi-omics sequencing of gastroesophageal junction adenocarcinoma reveals prognosis-relevant key factors and a novel

immunogenomic classification
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gastroesophageal junction adenocarcinoma using multiomics

analysis, classifying the disease into three distinct molecular
subtypes, each associated with unique prognoses, therapeutic
targets, and diagnostic biomarkers. Notably, the immune-deserted
subtype, exhibiting a poor immune response, is defined by an
in an

earlier KRAS mutation, a finding further validated

independent cohort.
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Background

The incidence of gastroesophageal junction adenocarci-
noma (GEJAC) in Asian countries has increased alarm-
ingly [1], with highly aggressive malignancy and poor
outcomes [2]. Although there are many similarities among
oesophageal, gastroesophageal junction, and gastric ade-
nocarcinoma [3], GEJAC exhibits distinct signatures due
to its unique anatomical location and complex biological
origins. Its features cannot be defined by a single molecu-
lar profile [4]. Currently, no uniform and reliable molecu-
lar typing of GEJAC exists to guide personalized clini-
cal treatment. Thus, it is urgent to establish a robust and
feasible genomic method to classify GEJAC for optimal
treatment.

Lin et al. [5]. reported COSMIC signature 17 as a prog-
nostic marker for GEJAC patients. In another small set
of GEJAC whole exome sequencing analyses, Hao et al.
[6] demonstrated that APOBEC mutational signatures and
intact chromosome 4 were correlated with longer survival.
Previous studies on GEJAC focused on single base sub-
stitution (SBS) signatures without investigating genomic
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structure variations (SV), which may affect more of the
cancer genome than any other type of somatic genetic
alteration [7]. We analyzed the prognostic impact of all
kinds of genomic alteration signatures, including SBS,
double-based substitution (DBS), small insertion and dele-
tion (ID), copy-number variation (CNV), and SV signa-
tures in GEJAC patients.

To develop GEJAC molecular classification, we per-
formed a comprehensive multi-omics molecular analysis,
including whole genomic, transcriptomic, TCR reper-
toires, and immunohistochemical analysis, on 92 patients
of GEJAC tissues and paired normal adjacent tissues. Our
study may improve current knowledge about the molec-
ular features of GEJAC and provide feasible molecular
subtyping to predict effective therapeutic regimens and
prognosis.
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Results

Prognostic mutational driver genes, signatures,
and structural variations in GEJAC

We collected 92 fresh frozen tumor and paired normal
samples and performed WGS analysis with a minimum
read coverage of > 100 X . The key clinical characteristics
of the patients are summarized in Fig. 1A and Table S1.
The most mutated gene was TP53 (72%) (Figure S1A).
We used dNdScv, MutSigCV and MutSig2CV software
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Fig.1 The featured genomic changes of gastroesophageal junction
adenocarcinoma (GEJAC). A Summary of significantly mutated
driver genes and clinical features of the 92 GEJAC patients. Tiling
bars above the heatmap show the distribution of different clinico-
pathological characteristics. The histogram on the left shows the nor-
malized cumulative mutational contribution of COSMIC signatures
for significantly mutated driver genes. The histogram on the right
shows the contribution of the mutation type of each driver gene. B-C
Kaplan—Meier curves of 92 GEJAC patients’ 5-year survival accord-

ing to the level of TMB (b) and focal CNV burden (c). p values were
calculated using log-rank tests. D The frequency of somatic copy-
number variations (CNVs) across 22 chromosomes in 92 GEJAC
patients. E Pooled hazard ratio (HR) of the genomic signatures for
S5-year survival rate. The size of bubbles indicates the frequency of
signature occurrence in 92 GEJAC patients. The color of bubbles rep-
resents the p value for the impact of each signature on the 5-year sur-
vival. The black dashed line indicates HR =1
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to predict mutated driver genes and identified 30 mutated
driver genes with significant impacts on survival in our
cohort (all p <0.05, Fig. 1A, S2). Four driver genes
(EPHA4, ZNF292, NTRK2, and CNOTI) were validated
for their survival influence value (all p <0.05) in other
cohorts [3, 8] (Figure S3A-D). Patients with higher tumor
mutation burden (TMB) (>2.92 mutations) had signifi-
cantly better survival than those with lower (5-year sur-
vival, 66.0% vs. 35.6%, p=0.0014) (Fig. 1B). We also
calculated SNV and InDel mutation burden, naming them
TMB-SNV and TMB-InDel [9]. Similar to the total TMB,
both of these indicators demonstrated a positive prognostic
impact (all p <0.01) (Figure S1B-C).

We mapped the somatic mutation data to the known COS-
MIC nomenclature. The signatures that contributed the most
to the mutations for SBS were SBS2 (2,795,835/6,735,743,
41.5%), SBS5 (1,145,956/6,735,743, 17%), and SBS 17b
(473,882/6,735,743, 7.0%), but there was no correlation with
prognosis (Figure S4C-E). To identify etiological mutational
processes underlying driver mutations, we investigated the
mutational signature contribution to 30 predicted driver
genes. The prominent features in most driver genes were
COSMIC SBS-2 and SBS-5 (Fig. 1A), which are associ-
ated with apolipoprotein B mRNA-editing enzyme catalytic
polypeptide-like (APOBEC) activities and probably aging
or tobacco smoking [10].

For doublet base substitution (DBS), COSMIC DBS-
781 was the dominant signature (56,063/75,480, 74.3%).
After consideration of the transcriptional strand bias [11,
12], the SBS-96 matrix could be further elaborated into
SBS-384. We found that the more patients carrying the SBS-
384—-1 and SBS-384-7 signatures, the longer the survival
time were (5-year survival, 63% vs. 41%, p=0.045; 82% vs.
44%, p=0.013, separately) (Fig. 1E, S5A-B).

To investigate more GEJAC signatures affecting prog-
nosis, we used the de novo method to generate SBS and
DBS matrix signatures again. Among 78 DBS signatures,
De novo-DBS-78-D (3,658/75,480, 4.8%), which was domi-
nated by thymine nucleotide mutations, was the only signa-
ture significantly related to prognosis (p=0.013) (Fig. 1E,
S5C). We also detected small InDel features and found that
the occurrence of COSMIC-ID-83-9 (5,843/535,941, 1.1%)
resulted in worse survival outcome (p =0.040) (Fig. 1E,
S5D).

For CNVs, we calculated CNV burden, and high level
of focal CNV burden was associated with better progno-
sis (Fig. 1C). Tumors of longer or shorter survivors exhib-
ited similar CNVs across all 23 chromosomes, except for
amplification of 5p13.1 and deletion of 17q12 and 9q22.33
(all p<0.05) (Fig. 1D, 1E, S6A-D). Only the amplification
of MDM?2 (5.4%) was closely related to a worse prognosis
(median survival time, 60 months vs. 18.6 months, p=0.03)
(Figure S6E).
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We next examined the CNV and SV signatures with de
novo methods. Tumors of longer or shorter survivors exhib-
ited similar CNV signatures, except for De novo-CNV-48-A,
which occurred more frequently in longer survivors than in
shorter survivors (5-year survival, 60.3% vs.25.0%) (Fig. 1E,
S7A). Human genomes differ more as a consequence of
structural variation than of single-base-pair differences [7,
13]. We explored all SV signatures and found that the fre-
quency of De novo-SV-A and De novo SV-32-E were signifi-
cantly higher in the tumor of longer survivors (all p <0.01,
Fig. 1E, S7B-C). Both of the two features were characterized
by inversion of less than 1 M long oligonucleotides.

Prognosis relevant immunogenomic subtypes
of GEJAC based on 19 features.

To illuminate cooccurring and mutually exclusive genetic
lesions, we clustered 19 genomic features that significantly
impacted the 5-year survival rate and classified 92 GEJAC
patients into 3 distinct molecular subtypes with significant
differences in survival time by multi-omics integration and
visualization methods (Fig. 2A, S8A). Based on biological
features, we termed them the immune inflamed subtype (IF),
immune intermediate subtype (IM), and immune deserted
subtype (ID). IF subtype patients were associated with the
best survival rate, and patients with ID subtype showed the
worst survival time (5-year survival 72% vs. 54% vs. 16%,
p<0.0001) (Fig. 2B).

In terms of the genomic alterations, the IM and IF sub-
types showed some similarities. Compared with the ID sub-
type, both of them were characterized by high levels of TMB
(total and SNV), focal CNV burden, chromothripsis, micro-
satellite instability, and enrichment with genomic alteration
signatures (COSMIC-SBS-384—-1, COSMIC-SBS-384-7,
De novo-DBS-78-D, De novo-CNV-48-A, and De novo-
SV-32-A) (ID vs. IF, all p<0.01;ID vs. IM, all p <0.05)
(Fig. 2C, S8B-C). However, compared with the IM subtype,
the levels of TMB (total, SNV and InDel) and neoantigen in
the IF subtype were higher (all p <0.05) (Fig. 2D-E, S8B-C).
And the IF subtype was characterized by a positive signature
of De novo-SV-32-E (frequency 82.1%, IF vs. IM or ID,
all p <0.05) (Fig. 2C). In the IM subtype, we detected the
highest frequency of 17q12 deletion (frequency 78.6%, IM
vs. IF or ID, all p <0.05) (Fig. 2C), whose genomic regions
harbored the oncogene ERBB2. Accordingly, the RNA
expression levels of ERBB?2 in the IM subtype were signifi-
cantly lower than in the IF subtype (p =0.028) and showed
a decreasing trend compared to the ID subtype (p=0.113).
(Fig. 2F).

The ID subtype exhibited lower levels of several
genomic alterations mentioned previously and the survival
time of this subtype patients was lowest compared to the
IF and IM subtypes respectively (5-year survival, 16% vs.
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Fig.2 Genomic subtypes of GEJAC with prognostic significance. A
Clustered heatmap of 19 genomic features across 92 GEJAC patients.
The three subtypes are represented on the top bar, with the number
of samples in each subtype indicated in brackets. B Kaplan—Meier
curves of the 5-year survival of 92 GEJAC patients among the three
subtypes. C Summary of 19 key genomic features of 92 GEJAC

72%, p <0.000; 16% vs. 54%, p=0.003) (Fig. 2B-E, S8B-
C). The differentiation grade of the ID subtype appears to
be worse than that of the IM and IF subtypes (p=0.132,
p=0.138, separately) (Table S2). The level of T > G sub-
stitution frequency of the ID subtype was also lower than
that of the IF subtype (p <0.01) (Figure S8D). However,
the ID subtype was significantly enriched with deletion
genomic regions 9q22.33 (frequency 80%, ID vs. IF or
IM, all p <0.01) compared with the IM and IF subtypes
(Fig. 2C). This feature may play a crucial role in the tumor
development of the ID subtypes.

patients grouped by subtypes. The three subtypes are shown at the
top bar. All feature data were converted to dichotomous data based
on their optimal cut-off value. The black box represents a high occur-
rence level of genomic features. D-F Box plots comparing the level of
neoantigen (d), TMB-InDel (e), and expression of ERBB2 (f) among
three subtypes. *p <0.05, **p <0.01

The three subtypes of GEJAC exhibited distinct TCR
repertoire features.

Ninety-two GEJAC and paired normal tissues and 64
matched peripheral blood mononuclear cell (PBMC) sam-
ples were subjected to TCRp repertoire sequencing. The
most frequent CDR3 nucleotide length was 45 bp (Fig-
ure S9A). The number of unique CDR3 sequences in the
tumor was lower than that in normal tissues and PBMCs
(Fig. 3A). However, the percentage of the top 1000 unique
CDR3 amino acids in gastroesophageal junction tissues was
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Fig.3 TCR repertoire analysis in the 3 subtypes. A The number of
CDR3 sequences in GEJAC and paired normal tissues or PBMCs.
B Differences in the distribution of CDR3 amino acid sequences
between GEJAC and paired normal tissues or PBMCs. C Kaplan—
Meier curves of patient 5-year survival according to the frequency of

higher than that in PBMC:s (all p <0.01, Fig. 3B), indicating
a higher specificity and concentration of CDR3 fragments
in tissues. We estimated the V-J gene utilization profiles of
TRB. The segments TRBV20-1 and TRBJ2-1 were the most
frequent for intratumoral T cells (Figure S9B-C). Patients
with higher TRBV20-1 and TRBJ2-1 in the tumor had bet-
ter OS (all p <0.05) (Fig. 3C, S9D). We utilized the PanPep
tool[14] to predict the antigen sequence most likely recog-
nized by TRBV20-1, which was identified as TZVQRHRS-
GIR' (Table S3). 29.8% and 27.9% of TRBV20-1 corre-
sponded to HLA-BO1 and HLA-AOQ3, respectively.

The Morisita—Horn index of the IM and IF subtypes
were lower than that of the ID subtype (IM vs. 1D,
p=0.042; IF vs. ID, p =0.068), indicating that it was easy
to activate TCR reaction changes in the IM and IF sub-
types (Fig. 3D). Compared to the paired normal tissues,
we found that the TCR high clone number was obviously
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TRBV20-1. D Box plots comparing the Morisita—Horn index levels
among the 3 subtypes. E-H Changes in high clone number (e), diver-
sity (f), evenness (g), and richness (h) between tumor and normal tis-
sues among the 3 subtypes. I Box plots comparing level of the TCR/
pMHC-binding strength among the 3 subtypes. *p <0.05, **p <0.01

increased in the IM and IF subtypes, but not in the ID
subtype (all p<0.01) (Fig. 3E). Although there were no
significant differences in diversity and clonality among the
3 subtypes in tumors, we found elevated TCR diversity and
lower TCR clonality in tumor of the IM subtype than in
paired normal tissues (all p <0.05, Fig. 3F, SO9E). We dis-
sected the single parameters of diversity and found that the
increased diversity in tumor of the IM subtype appeared
to be most explained by a gain of evenness (p =0.017)
(Fig. 3G-H). We also calculated the Gini coefficient index
difference between IM subtype tumor and normal tis-
sues and the TCR repertoires in tumor of the IM subtype
showed more even features (p =0.051) (Figure S9F).

To synthesize the analysis of the relationship between
neoantigens and TCRs, we adopted TCR/pMHC-binding
strength [15], which represents a potentially stronger ability
to activate T cells. Compared to the IM and ID subtype, the
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IF subtype showed significantly strongest immune activation
ability (all p<0.001) (Fig. 3D).

Neoantigen may be generated from certain
genomic alterations and are enriched in the immune
inflamed subtype.

We used NetMHC (v4.0) and NetMHCpan (v4.1) software
to calculate the neoantigens in GEJAC. The high neoantigen
load (> 547) improved the prognosis significantly (5-year
survival 68% vs. 41%, p=0.005) (Fig. 4A). The highest
load of neoantigen was enriched in the IF subtypes com-
pared to the IM and ID subtypes (median, 747 vs. 329 vs.
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237 respectively, all p <0.01) (Fig. 2D). Considering the
potential bridging role of neoantigens in the genomic and
TCR repertoire alterations, we calculated the correlation of
neoantigens with the genomic and TCR indices. There were
no correlations between neoantigen with the common indi-
ces of TCR (all p>0.05). However, an increased number
of neoantigens may result in stronger TCR/pMHC binding
(r=0.92, p<0.01) (Fig. 4B).

All aforementioned significant genomic signatures
were also investigated. High TMB and TMB-SNV were
significant factors leading to neoantigens (both »=0.99,
p<0.001) (Fig. 4B). COSMIC-SBS-384-1 (p=0.047) and
De novo-SV-32-A (p=0.001) were positively associated
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Fig.4 Genomic and TCR repertoire’s features associated with neoan-
tigens. A Kaplan—Meier curves of 92 GEJAC patients’ 5-year sur-
vival according to the expression of predicted neoantigens. B A cor-
relation matrix in which the type and depth of coloring were used to
highlight the positive (blue) or negative (red) Spearman correlation
coefficient between genomic changes and TCR repertoire’s features.
C-D Box plots comparing neoantigen levels in GEJAC samples with

and without COSMIC-SBS-384-1 (n=43 and 49, respectively) (c)
and De novo-SV-32-A (n=62 and 30, respectively) (d). E Kaplan—
Meier curves of 92 GEJAC patients’ 5-year survival according to
the expression of chromothripsis. F Box plots comparing neoantigen
expression in GEJAC samples with and without MSI (n=18 and 74,
respectively). *p <0.05, **p <0.01

@ Springer



Z.Maetal.

with neoantigens (Fig. 4C-D). There was a significant cor-
relation between the 5-year survival rate and chromothrip-
sis (p=0.032) (Fig. 4E), but not with microsatellite insta-
bility (MSI) (p=0.12) (Figure S9G). However, high MSI
was closely related to high neoantigen levels (p =0.004)
(Fig. 4F). Chromothripsis tends to result in more predicted
neoantigens (Figure S9H). These findings indicate that the
high level of TMB, COSMIC-SBS-384-1, De novo-SV-
32-A, and MSI lead to the generation of more neoantigens
and stronger TCR/pMHC binding.

The immune deserted subtype exhibited an earlier
occurrence of KRAS mutations in evolutionary
history of GEJAC.

To our knowledge, this is the first study to estimate the
order [16] of acquisition of recurrent genomic aberrations,
including somatic copy-number alterations (SCNAs), whole-
genome doubling (WGD), and common cancer driver genes
within each of the subtypes of GEJAC. In IM and IF sub-
types, mutations in the driver genes TP53, PIK3CA, and
ARIDIA were generally early and high frequency (> 10%)
events, occurring before WGD (Fig. SA-B). Compared to
the IF and IM subtypes, the appearance of TP53 mutations
occurred later in the ID subtype, while the time of WGD
occurrence was much earlier. In the ID subtype, the earliest
mutation driver gene event was KRAS. (Fig. 5C). The copy-
number drivers in the IM and IF subtypes were balanced

between gains and loss of heterozygosity (LOH), whereas
early events of the ID subtype were dominated by LOH. The
loss of 9q, which was specific in the ID subtype, was a rela-
tively early event and resulted in a worse survival outcome
(Fig. 5C, S60C).

Tumor immune microenvironment and biological
characteristics in the three subtypes.

To explore the association between the molecular classi-
fication and tumor biology process, we next deconvoluted
the RNA sequencing data of 53 GEJAC patients to infer
GSEA pathway analysis and the immune microenvironment,
including 28 infiltrating immune cell types and the expres-
sion of 20 immune-related genes [17]. Compared with the
ID subtype, both the IM and IF subtypes showed a higher
abundance of y8T cells and lower abundance of Th17 cells
(all p<0.05) (Fig. 6A, S10A-B). Meanwhile, the IF subtype
tended to be enriched with higher activated dendritic cells
(IF vs. ID, p=0.030) and CD8* T (IF vs. ID, p=0.090)
cells infiltration compared with the ID subtype, suggest-
ing an active or “hot” immune microenvironment (Fig. 6A,
S10C-D).

We then investigated the expression differences of
20 immune checkpoint genes [17]. The expression of
PD-L1 was significantly higher in the IF subtype than
in the IM and ID subtypes (IF vs. IM, p=0.009; IF vs.
ID, p=0.00075) (Fig. 6B). We also found the higher
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Fig.5 Diagrams of estimated ordering of significant SCNAs (includ-
ing chromosome gains/losses and mutations) relative to WGD in 3
subtypes. The size of violin plots indicates the uncertainty of tim-
ing for specific events across all samples. The short black solid
lines denote the median time. The vertical solid red line represents
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the median time for WGD events. Events with odds greater than 10,
occurring earlier or later, are depicted with vertical solid lines in
green or purple. The histogram on the right displays the prevalence of
each event in the cohort
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Fig.6 Transcriptomics analysis of the 3 subtypes. A Heatmap show- staining in the IF or ID group patients (X200, positive cells are dis-

ing the normalized enrichment score of tumor-infiltrating immune
cell types across the three subgroups. On the right, significant differ-
ences in the quantity of infiltrating cell types among the 3 subgroups
are indicated with an asterisk (¥ or **). B Box plots comparing the
mRNA expression level of PD-L1 among the 3 subtypes. C) The pro-
portions of CD8* T cells in intratumor or stromal tissues separately
among the 3 subtypes. D) Positive or negative examples of anti-CD8

expression of LAG3 in the IF subtype than in the IM sub-
type (p =0.024) (Figure S10E). Compared to samples in
the ID subtype, our immunohistochemistry analysis also
revealed a significant increase in CD8" T cells abundance

played in brown). E Volcano plot showing differences in gene mRNA
expression levels among the 3 subtypes. Dots above the horizontal
line indicate upregulated genes (log2(fold change)>0), and Dots
under the horizontal line indicate downregulated genes (log2(fold
change) <0). F Gene set enrichment analysis was performed across
the three subtypes. Differences for all pathways among the 3 subtypes
were statistically significant. *p <0.05.¥*p <0.001

in the IM and IF subtypes, but not in CD3" or CD*" T cells
(Fig. 6C-D, S11A-D). This observation may partly explain
why the patients with the ID subtype had worse immune
reactions and prognosis.
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We identified genes that were differentially expression
among the 3 subtypes. Among the overlapping genes, the
expression of genes (XIST, ALPG, MAEL, CHGB) in the IM
subtype were more than tenfold higher than that in the IF
and ID subtypes (Fig. 6E). In the IF subtype, we also identi-
fied tenfold highly expressed genes (DSGI, CRCTI, TGM3,
SPRR2B, SPRR2E, and SPRR2F) compared to the other
two subtypes (Fig. 6E). To further understand the biologi-
cal features of each subtype, we compared gene expression
with respect to a set of significant pathways. The pancreas
beta cell pathway and Wnt/p-catenin related pathway were
significantly upregulated in the IM subtype (all p <0.05)
(Fig. 6F). When compared with the IM and ID subtypes, the
IF subtype was characterized by IFN-a and IFN-y response
pathways (all p <0.05) (Fig. 6F). Meanwhile, the ID subtype
displayed a significant enrichment of classical oncogenic
pathways (KRAS, PI3K-AKT-mTOR, and cell cycle-
related pathways) (all p <0.05) (Fig. 6F). The characteris-
tics of IF and ID subtypes were also validated in an addi-
tional 124 patients GEJAC cohort [5] (Figure S12A-F). The
prognostic value of identified signatures was investigated in
esophageal and gastric cancers using data from the TCGA
database (Figure S13-14). More details were described in
the supplementary data file.

Discussion

There is a lack of useful biomarkers for guiding treatment
selection and predicting prognosis. We performed a multi-
omics study on a large cohort of GEJAC patients. And this is
the largest TCR sequencing analysis study of GEJAC. Utiliz-
ing COSMIC nomenclature and the de novo method, we first
identified 7 novel genomic mutation and structural alteration
signatures. We then classified GEJAC into three molecular
subtypes. The three subtypes were distinguished by distinct
dominant genomic alterations, tumor immune responses,
and prognostic differences, highlighting their potential for
personalized therapy. The mutational signatures influencing
prognosis in GEJAC were either undetectable in esophageal
or gastric cancers or had no impact on their survival. This
highlights the distinct molecular characteristics of GEJAC,
aligning with findings from previous studies [3, 4].

TMB has been widely explored as an effective biomarker
for describing tumor status, response to ICIs and survival [18].
A higher TMB increases the probability of tumor neoantigen
production and, therefore, the likelihood of immune recogni-
tion and tumor cell killing [19]. For the burden of mutational
insertions and deletions (TMB-InDel), it has the potential to
engender novel neoantigens that are more immunogenic [20].
The prognostic significance of TMB may vary by tumor type.
In esophageal cancer, high TMB is linked to poor prognosis,
while in GEJAC and gastric cancer, high TMB is associated
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with better outcomes. We found that 42.4% of patients (IF
group) exhibited high TMB (both TMB-SNV and TMB-
InDel), a high neoantigen load, as well as high CNV burden,
MSI, and chromothripsis. Recent study indicated that over-
all outcomes with anti-PD-1-based therapies are favorable in
MSI-high tumors [21, 22]. Frequent genomic alterations in
the IF subtype exposed more neoantigens, promoted stronger
immune recognition and response, and exhibited the best sur-
vival. We also found high expression of immune checkpoints,
such as PD-LI and LAG3, in the IF subtype, which reveals that
this IF might benefit most from checkpoint blockade therapy.

The IM subtype also exhibited a high frequency of CNV
burden, MSI, and chromothripsis and ydT cells, along with
a significantly increased high clone number and diversity of
TCR clones, which might activate the immune response and
enable the IM subtype to benefit from checkpoint blockade
therapy [23-26]. However, possibly due to lower levels of
TMB, TMB-SNV, and TMB-InDel, the IM subtype had a rel-
atively low neoantigen count and survival time compared to
the IF subtype. The IM subtype was characterized by deletion
of DP17q12 (containing ERBB?2 gene) with low expression
of ERBB2. It may not benefit from trastuzumab therapy, but
this type was also suitable for immune therapy. Moreover, we
identified the unique highly expressed genes in the IM sub-
type, such as MEAL, which promoted colon and hepatocellular
cancer cell stemness and drug resistance [27, 28], indicating a
potential therapeutic target.

The ID subtype in this study could be classified as a “cold
tumor” [29], characterized by the lowest neoantigen exposure,
weakest immune reaction and poorest prognosis. Due to low
TMB [25], MSI [26], and immune checkpoint genes expres-
sion [30], these patients may not benefit from immunotherapy.
However, KRAS mutations and WGD were earlier event in
the ID subtype. Somatic activating or gain-of-function KRAS
mutations are usually observed in many tumors and regulate
downstream signaling cascades of pathways such as PI3K and
MAPK [31, 32]. We observed upregulation of the KRAS and
PI3K-AKT-mTOR pathway in the ID subtype in our and an
additional cohort. Targeting the KRAS and PI3K-mTOR sign-
aling pathways may be promising therapeutic options for this
type. Due to our limited sample size and the occurrence of
certain low-frequency mutational events, the generalizability
of our findings on prognostic associations may be limited. Due
to the unavailability of whole WGS data from the additional
cohort, it is not feasible to completely validate our classifica-
tion model, which may be also a limitation for our study.

Conclusions

Our T-cell receptor repertoire-based multi-omics analysis of
a large cohort of GEJAC cases provides a better understand-
ing of novel molecular signatures related to prognosis and
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leads to molecular classification into three subtypes. The
statuses of TMB-SNV and TMB-InDel are useful implica-
tions for stratification. In each subtype, we found potential
therapeutic targets and specific molecular characteristics.
Our results contribute to the understanding of the molecular
landscape of GEJAC and provide a strong starting point for
performing meaningful clinical trials.

Materials and methods
Patient samples

We prospectively collected 92 patients with gastroesoph-
ageal junction adenocarcinoma from 2010 to 2015 at the
Tianjin Medical University Cancer Institute & Hospital. All
patients did not receive preoperative treatment and under-
went curative RO surgery. After curative resection, GEJAC
patients received systematic fluoropyrimidine-based chemo-
therapy and regular follow-up. Three public data sets were
analyzed. We collected multi-omics data: somatic mutation
data of Lin[5] and data from EMBL (PRJEB41070), and
the expression data from NCBI (GSE159721). The somatic
mutation data from cBioPortal were also used to verify our
results.

Whole-genome sequencing and data processing

Whole-genome sequencing and data processing were per-
formed as described previously[33]. The WGS libraries were
constructed from 92 primary tumors and their paired normal
samples according to the manufacturer’s instructions for the
MGIEasy FS DNA Library Prep Set (cat. 1,000,006,987;
MGI, China). The libraries were sequenced on a DNBSEQ
platform (BGI, Shenzhen) and 100-bp paired-end sequenc-
ing was performed to yield data of > 100 X read coverage for
all samples. During WGS data pre-processing, low-quality
reads and adaptor sequences were removed by SOAPnuke
(v2.0.7)[34]. Sentieon Genomics software was used to map
and process high-quality reads for downstream analysis[35].

Somatic short variant calling was performed as described
previously[33]. Putative somatic SNVs, MNVs, and/or
InDels were identified in each tumor-normal pair using
multiple accelerated tools (TNhaplotyper, corresponding to
MuTect2[36] of GATK3; TNhaplotyper2, corresponding to
MuTect2 of GATK4; TNsnv, corresponding to MuTect[37])
and TNscop[38] of Sentieon Genomics software (version:
sentieon-genomics-202010). Somatic CNVs were detected
using the Copy-Number Variant caller of Sentieon Genom-
ics software (version: sentieon-genomics-202010), and
ascatNgs[39] (version: v4.5). Somatic SVs were detected in
each paired normal-tumor sample by TNscope.

Identification of potential driver genes
and mutational signatures

We used dNdScv (v0.0.1.0) [40], MutSigCV(v1.41) (http://
www.broadinstitute.org/cancer/cga/mutsig), MutSig2CV
[41], and CGI(Cancer Genome Interpreter) [42] to identify
genes with significantly recurrent coding-sequence SNVs/
InDels/CNVs.

Analyses of mutational signatures were performed by
SigProfilerExtraction [43] (version v1.1.4) with the param-
eters-reference_genome GRCh37-opportunity_genome
GRCh37-minimum_signatures 1-maximum_signatures
40-nmf_replicates 500-cpul2-gpu True-cosmic_version
3.2. SigProfilerExtraction consists of two processes: de novo
signature extraction and signature assignment [44, 45]. Hier-
archical de novo extraction of SBS, DBS, and ID signatures
from all samples was followed by estimation of the optimal
solution (number of signatures) based on the stability and
accuracy of all solutions. After identifying the signatures,
their activities were estimated by calculating the number
of mutations assigned to each sample. SigProfilerExtraction
also decomposed de novo signatures to the COSMIC signa-
ture database (version 3.2) [46].

RNA sequencing and data processing

Pre-processing of RNA-seq data, including removal of low-
quality reads and rRNA reads, was carried out using Ribo-
Detector [47] and Cutadapt [48]. Clean sequencing data
were mapped to human reference GRCh37 using STAR
[49]. DESeq [50] was used to detect the differential expres-
sion genes with threshold of log2 fold changes >1 and P
value < 0.05. We also employed a method called Gene Set
Variation Analysis (GSVA) [51] to calculate gene set or
pathway scores on a per-sample basis. GSVA transforms a
gene by sample gene expression matrix into a gene set by
sample pathway enrichment matrix. We made a heatmap of
the enrichment matrix, and we used the GSVA scores for a
number of other downstream analyses such as differential
expression analysis.

TCR-sequence library preparation and sequencing

Genomic DNA from peripheral blood, tumor-adjacent
tissues, and tumor tissues was extracted and analyzed for
TCR-seq as previously described [52]. Briefly, we used the
Multiplex PCR (MPCR) primers, which includes 30 forward
V primers and 13 reverse J primers, to amplify the rear-
ranged CDR3 regions of TCRs. Libraries with insert sizes of
200--300 bp were analyzed using a Bioanalyzer, and 200 bp
single-end sequencing was performed on a BGISEQ-500
platform (MGI Tech Co., Ltd.) following the manufacturer's
protocol.
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In our TCR data, IMonitor [53] was used to analyze TCR
sequencing data as described previously [52]. We utilized
the VDIJtools [54] to calculate the diversity, richness, even-
ness, gini coefficient index, and Morisita-Horn index of
T-cell receptors [24, 55, 56].

Prediction of tumor neoantigens

OptiType (v1.3.5) [57] and Polysolver (v1.0) [58] tools were
used for HLA typing calculation and analysis in this study.
The results obtained from the two tools’ algorithm were
merged. Neoantigens were predicted by NetMHC (v4.0) [59]
and NetMHCpan (v4.1) [60].

TCR-peptide binding strength prediction

We used ERGO-II(Extended TCR-Peptide Binding Predic-
tor) [15], which is a deep learning based method for predict-
ing TCR and epitope peptide binding. Note that due to the
model size, ERGO-II includes here only two models, one
for the McPAS database and one for VDJdb. We used the
VDIdb database, and we deemed ERGO score above 0.95 is
reliable as positive binding in most cases.

Molecular typing

For the subtypes’ analysis, we combined all identified
genomic features which were significantly associated with
5-year survival. Tally 19 features are PI3K pathway mutation
status, amplification of MDM?2, focal CNV burden, ampli-
fication of 5p13.1, deletion of 17q12, deletion of 9q22.33,
COSMIC-SBS-384 — 1, COSMIC-SBS-384 — 7, De novo-
DBS-78 —D, De novo-CNV48 — A, De novo-SV-32 -0, De
novo-SV-32 —E, COSMIC-ID-83 -9, TMB, TMB-SNYV,
TMB-InDel, Neoantigen, Chromothripsis, and MSI status.
Considering the different variable type, we dichotomized
PI3K pathway mutation status, amplification of MDM?2,
amplification of 5p13.1, deletion of 17ql12, deletion of
9q22.33, COSMIC-SBS-384 — 1, COSMIC-SBS-384 -7,
De novo-DBS-78 — D, De novo-CNV48 — A, De novo-
SV-32 -0, De novo-SV-32 —E, and COSMIC-ID-83 —9 into
present/absent (the cut-off value of those 12 features were
zero). We also dichotomized 5 features into high/low accord-
ing to those best cut-off value for impacting survival. The
thresholds of focal CNV burden, TMB, TMB-SNV, TMB-
InDel, and neoantigen were 348, 2.92, 4.08, 0.28, and 547,
respectively. Once all the 19 features were binarized, we
constructed a matrix of samples using the R Package MOV-
ICS [61] for multi-omics integration and visualization in
cancer subtyping.
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Inference of clonal structure and phylogenetic
relationship

We demonstrate the use of PhylogicNDT [62] by apply-
ing it to whole-genome data of 92 samples. Single patient
timing and the event timing in the cohort were inferred
using PhylogicNDT LeagueModel. We identify signifi-
cantly different progression trajectories across subtypes
of gastroesophageal junction adenocarcinoma.

Statistical analysis

We used Chi-square or Fisher’s exact test for any inde-
pendence test between two categorical variables and Wil-
coxon rank-sum test for any independence test between
a continuous variable and a binary categorical variable,
when there was no covariate to adjust for. Pearson’s rank
correlation coefficient was used to measure the correla-
tion between two continuous variables. Survival curves
were plotted by Kaplan—Meier method. A P value <0.05
was considered to indicate statistical significance. Data
analysis and plot generation were performed in R (ver-
sion 4.2.3).

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10120-025-01585-y.
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