
Vol.:(0123456789)

Gastric Cancer 
https://doi.org/10.1007/s10120-025-01585-y

ORIGINAL ARTICLE

Multi‑omics sequencing of gastroesophageal junction 
adenocarcinoma reveals prognosis‑relevant key factors and a novel 
immunogenomic classification

Zhao Ma1,6 · Mengting Li2,4,5 · Fuqiang Li2,4,9 · Kui Wu2,4,9 · Xianxian Wu8 · Tian Luo2,4,9 · Na Gao7 · Huijuan Luo2,4,9 · 
Zhilin Sui8 · Zhentao Yu8 · Hongjing Jiang6 · Xiaobin Shang6 · Chuangui Chen6 · Jie Yue6 · Fianbiao Meng1 · 
Xiaofeng Duan6 · Bo Xu1,3 

Received: 6 September 2024 / Accepted: 10 January 2025 
© The Author(s) under exclusive licence to The International Gastric Cancer Association and The Japanese Gastric Cancer Association 2025

Abstract
Background  Gastroesophageal junction adenocarcinoma (GEJAC) exhibits distinct molecular characteristics due to its 
unique anatomical location. We sought to investigate effective and reliable molecular classification of GEJAC to guide 
personalized treatment.
Methods  We analyzed the whole genomic, transcriptomic, T-cell receptor repertoires, and immunohistochemical data in 92 
GEJAC patients and delineated the landscape of genetic and immune alterations. In addition to COSMIC nomenclature, the 
de novo nomenclature was also utilized to define signatures and investigate their correlation with survival. A novel molecular 
subtype was developed and validated in other cohorts.
Results  We found 30 mutated driver genes, 7 novel genomic signatures, 3 copy-number variations, and 2 V-J gene usages 
related to prognosis that were not identified in previous study. A high frequency of COSMIC-SBS-384–1 and De novo-
SV-32-A was associated with more neoantigen generation and a better survival. Using 19 molecular features, we identified 
three immune-related subtypes (immune inflamed, intermediate, and deserted) with discrete profiles of genomic signatures, 
immune status, and clinical outcome. The immune deserted subtype (27.2%) was characterized by an earlier KRAS mutation, 
worse immune reaction, and prognosis than the other two subtypes. The immune inflamed subtypes exhibited the highest 
levels of neoantigens, TCR/pMHC-binding strength, CD8 + T-cell infiltration, IFN-α/γ response pathways, and survival rate.
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Conclusions  These results emphasize the immune reaction and prognostic value of novel molecular classifications based on 
multi-omics data and provide a solid basis for better management of GEJAC.

Graphical abstract

Keywords  Gastroesophageal junction adenocarcinoma · Molecular classification · Prognosis · Immune reaction · 
Sequencing

Background

The incidence of gastroesophageal junction adenocarci-
noma (GEJAC) in Asian countries has increased alarm-
ingly [1], with highly aggressive malignancy and poor 
outcomes [2]. Although there are many similarities among 
oesophageal, gastroesophageal junction, and gastric ade-
nocarcinoma [3], GEJAC exhibits distinct signatures due 
to its unique anatomical location and complex biological 
origins. Its features cannot be defined by a single molecu-
lar profile [4]. Currently, no uniform and reliable molecu-
lar typing of GEJAC exists to guide personalized clini-
cal treatment. Thus, it is urgent to establish a robust and 
feasible genomic method to classify GEJAC for optimal 
treatment.

Lin et al. [5]. reported COSMIC signature 17 as a prog-
nostic marker for GEJAC patients. In another small set 
of GEJAC whole exome sequencing analyses, Hao et al. 
[6] demonstrated that APOBEC mutational signatures and 
intact chromosome 4 were correlated with longer survival. 
Previous studies on GEJAC focused on single base sub-
stitution (SBS) signatures without investigating genomic 

structure variations (SV), which may affect more of the 
cancer genome than any other type of somatic genetic 
alteration [7]. We analyzed the prognostic impact of all 
kinds of genomic alteration signatures, including SBS, 
double-based substitution (DBS), small insertion and dele-
tion (ID), copy-number variation (CNV), and SV signa-
tures in GEJAC patients.

To develop GEJAC molecular classification, we per-
formed a comprehensive multi-omics molecular analysis, 
including whole genomic, transcriptomic, TCR reper-
toires, and immunohistochemical analysis, on 92 patients 
of GEJAC tissues and paired normal adjacent tissues. Our 
study may improve current knowledge about the molec-
ular features of GEJAC and provide feasible molecular 
subtyping to predict effective therapeutic regimens and 
prognosis.
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Results

Prognostic mutational driver genes, signatures, 
and structural variations in GEJAC

We collected 92 fresh frozen tumor and paired normal 
samples and performed WGS analysis with a minimum 
read coverage of ≥ 100 × . The key clinical characteristics 
of the patients are summarized in Fig. 1A and Table S1. 
The most mutated gene was TP53 (72%) (Figure S1A). 
We used dNdScv, MutSigCV and MutSig2CV software 

Fig. 1   The featured genomic changes of gastroesophageal junction 
adenocarcinoma (GEJAC). A Summary of significantly mutated 
driver genes and clinical features of the 92 GEJAC patients. Tiling 
bars above the heatmap show the distribution of different clinico-
pathological characteristics. The histogram on the left shows the nor-
malized cumulative mutational contribution of COSMIC signatures 
for significantly mutated driver genes. The histogram on the right 
shows the contribution of the mutation type of each driver gene. B-C 
Kaplan––Meier curves of 92 GEJAC patients’ 5-year survival accord-

ing to the level of TMB (b) and focal CNV burden (c). p values were 
calculated using log-rank tests. D The frequency of somatic copy-
number variations (CNVs) across 22 chromosomes in 92 GEJAC 
patients. E Pooled hazard ratio (HR) of the genomic signatures for 
5-year survival rate. The size of bubbles indicates the frequency of 
signature occurrence in 92 GEJAC patients. The color of bubbles rep-
resents the p value for the impact of each signature on the 5-year sur-
vival. The black dashed line indicates HR = 1
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to predict mutated driver genes and identified 30 mutated 
driver genes with significant impacts on survival in our 
cohort (all p < 0.05, Fig.  1A, S2). Four driver genes 
(EPHA4, ZNF292, NTRK2, and CNOT1) were validated 
for their survival influence value (all p < 0.05) in other 
cohorts [3, 8] (Figure S3A-D). Patients with higher tumor 
mutation burden (TMB) (≥ 2.92 mutations) had signifi-
cantly better survival than those with lower (5-year sur-
vival, 66.0% vs. 35.6%, p = 0.0014) (Fig. 1B). We also 
calculated SNV and InDel mutation burden, naming them 
TMB-SNV and TMB-InDel [9]. Similar to the total TMB, 
both of these indicators demonstrated a positive prognostic 
impact (all p < 0.01) (Figure S1B-C).

We mapped the somatic mutation data to the known COS-
MIC nomenclature. The signatures that contributed the most 
to the mutations for SBS were SBS2 (2,795,835/6,735,743, 
41.5%), SBS5 (1,145,956/6,735,743, 17%), and SBS 17b 
(473,882/6,735,743, 7.0%), but there was no correlation with 
prognosis (Figure S4C-E). To identify etiological mutational 
processes underlying driver mutations, we investigated the 
mutational signature contribution to 30 predicted driver 
genes. The prominent features in most driver genes were 
COSMIC SBS-2 and SBS-5 (Fig. 1A), which are associ-
ated with apolipoprotein B mRNA-editing enzyme catalytic 
polypeptide-like (APOBEC) activities and probably aging 
or tobacco smoking [10].

For doublet base substitution (DBS), COSMIC DBS-
78–1 was the dominant signature (56,063/75,480, 74.3%). 
After consideration of the transcriptional strand bias [11, 
12], the SBS-96 matrix could be further elaborated into 
SBS-384. We found that the more patients carrying the SBS-
384–1 and SBS-384–7 signatures, the longer the survival 
time were (5-year survival, 63% vs. 41%, p = 0.045; 82% vs. 
44%, p = 0.013, separately) (Fig. 1E, S5A-B).

To investigate more GEJAC signatures affecting prog-
nosis, we used the de novo method to generate SBS and 
DBS matrix signatures again. Among 78 DBS signatures, 
De novo-DBS-78-D (3,658/75,480, 4.8%), which was domi-
nated by thymine nucleotide mutations, was the only signa-
ture significantly related to prognosis (p = 0.013) (Fig. 1E, 
S5C). We also detected small InDel features and found that 
the occurrence of COSMIC-ID-83–9 (5,843/535,941, 1.1%) 
resulted in worse survival outcome (p = 0.040) (Fig. 1E, 
S5D).

For CNVs, we calculated CNV burden, and high level 
of focal CNV burden was associated with better progno-
sis (Fig. 1C). Tumors of longer or shorter survivors exhib-
ited similar CNVs across all 23 chromosomes, except for 
amplification of 5p13.1 and deletion of 17q12 and 9q22.33 
(all p < 0.05) (Fig. 1D, 1E, S6A-D). Only the amplification 
of MDM2 (5.4%) was closely related to a worse prognosis 
(median survival time, 60 months vs. 18.6 months, p = 0.03) 
(Figure S6E).

We next examined the CNV and SV signatures with de 
novo methods. Tumors of longer or shorter survivors exhib-
ited similar CNV signatures, except for De novo-CNV-48-A, 
which occurred more frequently in longer survivors than in 
shorter survivors (5-year survival, 60.3% vs.25.0%) (Fig. 1E, 
S7A). Human genomes differ more as a consequence of 
structural variation than of single-base-pair differences [7, 
13]. We explored all SV signatures and found that the fre-
quency of De novo-SV-A and De novo SV-32-E were signifi-
cantly higher in the tumor of longer survivors (all p < 0.01, 
Fig. 1E, S7B-C). Both of the two features were characterized 
by inversion of less than 1 M long oligonucleotides.

Prognosis relevant immunogenomic subtypes 
of GEJAC based on 19 features.

To illuminate cooccurring and mutually exclusive genetic 
lesions, we clustered 19 genomic features that significantly 
impacted the 5-year survival rate and classified 92 GEJAC 
patients into 3 distinct molecular subtypes with significant 
differences in survival time by multi-omics integration and 
visualization methods (Fig. 2A, S8A). Based on biological 
features, we termed them the immune inflamed subtype (IF), 
immune intermediate subtype (IM), and immune deserted 
subtype (ID). IF subtype patients were associated with the 
best survival rate, and patients with ID subtype showed the 
worst survival time (5-year survival 72% vs. 54% vs. 16%, 
p < 0.0001) (Fig. 2B).

In terms of the genomic alterations, the IM and IF sub-
types showed some similarities. Compared with the ID sub-
type, both of them were characterized by high levels of TMB 
(total and SNV), focal CNV burden, chromothripsis, micro-
satellite instability, and enrichment with genomic alteration 
signatures (COSMIC-SBS-384–1, COSMIC-SBS-384–7, 
De novo-DBS-78-D, De novo-CNV-48-A, and De novo-
SV-32-A) (ID vs. IF, all p < 0.01;ID vs. IM, all p < 0.05) 
(Fig. 2C, S8B-C). However, compared with the IM subtype, 
the levels of TMB (total, SNV and InDel) and neoantigen in 
the IF subtype were higher (all p < 0.05) (Fig. 2D-E, S8B-C). 
And the IF subtype was characterized by a positive signature 
of De novo-SV-32-E (frequency 82.1%, IF vs. IM or ID, 
all p < 0.05) (Fig. 2C). In the IM subtype, we detected the 
highest frequency of 17q12 deletion (frequency 78.6%, IM 
vs. IF or ID, all p < 0.05) (Fig. 2C), whose genomic regions 
harbored the oncogene ERBB2. Accordingly, the RNA 
expression levels of ERBB2 in the IM subtype were signifi-
cantly lower than in the IF subtype (p = 0.028) and showed 
a decreasing trend compared to the ID subtype (p = 0.113). 
(Fig. 2F).

The ID subtype exhibited lower levels of several 
genomic alterations mentioned previously and the survival 
time of this subtype patients was lowest compared to the 
IF and IM subtypes respectively (5-year survival, 16% vs. 
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72%, p < 0.000; 16% vs. 54%, p = 0.003) (Fig. 2B-E, S8B-
C). The differentiation grade of the ID subtype appears to 
be worse than that of the IM and IF subtypes (p = 0.132, 
p = 0.138, separately) (Table S2). The level of T > G sub-
stitution frequency of the ID subtype was also lower than 
that of the IF subtype (p < 0.01) (Figure S8D). However, 
the ID subtype was significantly enriched with deletion 
genomic regions 9q22.33 (frequency 80%, ID vs. IF or 
IM, all p < 0.01) compared with the IM and IF subtypes 
(Fig. 2C). This feature may play a crucial role in the tumor 
development of the ID subtypes.

The three subtypes of GEJAC exhibited distinct TCR 
repertoire features.

Ninety-two GEJAC and paired normal tissues and 64 
matched peripheral blood mononuclear cell (PBMC) sam-
ples were subjected to TCRβ repertoire sequencing. The 
most frequent CDR3 nucleotide length was 45 bp (Fig-
ure S9A). The number of unique CDR3 sequences in the 
tumor was lower than that in normal tissues and PBMCs 
(Fig. 3A). However, the percentage of the top 1000 unique 
CDR3 amino acids in gastroesophageal junction tissues was 

Fig. 2   Genomic subtypes of GEJAC with prognostic significance. A 
Clustered heatmap of 19 genomic features across 92 GEJAC patients. 
The three subtypes are represented on the top bar, with the number 
of samples in each subtype indicated in brackets. B Kaplan––Meier 
curves of the 5-year survival of 92 GEJAC patients among the three 
subtypes. C Summary of 19 key genomic features of 92 GEJAC 

patients grouped by subtypes. The three subtypes are shown at the 
top bar. All feature data were converted to dichotomous data based 
on their optimal cut-off value. The black box represents a high occur-
rence level of genomic features. D-F Box plots comparing the level of 
neoantigen (d), TMB-InDel (e), and expression of ERBB2 (f) among 
three subtypes. *p < 0.05, **p < 0.01



	 Z. Ma et al.

higher than that in PBMCs (all p < 0.01, Fig. 3B), indicating 
a higher specificity and concentration of CDR3 fragments 
in tissues. We estimated the V-J gene utilization profiles of 
TRB. The segments TRBV20-1 and TRBJ2-1 were the most 
frequent for intratumoral T cells (Figure S9B-C). Patients 
with higher TRBV20-1 and TRBJ2-1 in the tumor had bet-
ter OS (all p < 0.05) (Fig. 3C, S9D). We utilized the PanPep 
tool[14] to predict the antigen sequence most likely recog-
nized by TRBV20-1, which was identified as 'LVQRHRS-
GIR' (Table S3). 29.8% and 27.9% of TRBV20-1 corre-
sponded to HLA-B01 and HLA-A03, respectively.

The Morisita–Horn index of the IM and IF subtypes 
were lower than that of the ID subtype (IM vs. ID, 
p = 0.042; IF vs. ID, p = 0.068), indicating that it was easy 
to activate TCR reaction changes in the IM and IF sub-
types (Fig. 3D). Compared to the paired normal tissues, 
we found that the TCR high clone number was obviously 

increased in the IM and IF subtypes, but not in the ID 
subtype (all p < 0.01) (Fig. 3E). Although there were no 
significant differences in diversity and clonality among the 
3 subtypes in tumors, we found elevated TCR diversity and 
lower TCR clonality in tumor of the IM subtype than in 
paired normal tissues (all p < 0.05, Fig. 3F, S9E). We dis-
sected the single parameters of diversity and found that the 
increased diversity in tumor of the IM subtype appeared 
to be most explained by a gain of evenness (p = 0.017) 
(Fig. 3G-H). We also calculated the Gini coefficient index 
difference between IM subtype tumor and normal tis-
sues and the TCR repertoires in tumor of the IM subtype 
showed more even features (p = 0.051) (Figure S9F).

To synthesize the analysis of the relationship between 
neoantigens and TCRs, we adopted TCR/pMHC-binding 
strength [15], which represents a potentially stronger ability 
to activate T cells. Compared to the IM and ID subtype, the 

Fig. 3   TCR repertoire analysis in the 3 subtypes. A The number of 
CDR3 sequences in GEJAC and paired normal tissues or PBMCs. 
B Differences in the distribution of CDR3 amino acid sequences 
between GEJAC and paired normal tissues or PBMCs. C Kaplan––
Meier curves of patient 5-year survival according to the frequency of 

TRBV20-1. D Box plots comparing the Morisita–Horn index levels 
among the 3 subtypes. E–H Changes in high clone number (e), diver-
sity (f), evenness (g), and richness (h) between tumor and normal tis-
sues among the 3 subtypes. I Box plots comparing level of the TCR/
pMHC-binding strength among the 3 subtypes. *p < 0.05, **p < 0.01
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IF subtype showed significantly strongest immune activation 
ability (all p < 0.001) (Fig. 3I).

Neoantigen may be generated from certain 
genomic alterations and are enriched in the immune 
inflamed subtype.

We used NetMHC (v4.0) and NetMHCpan (v4.1) software 
to calculate the neoantigens in GEJAC. The high neoantigen 
load (> 547) improved the prognosis significantly (5-year 
survival 68% vs. 41%, p = 0.005) (Fig. 4A). The highest 
load of neoantigen was enriched in the IF subtypes com-
pared to the IM and ID subtypes (median, 747 vs. 329 vs. 

237 respectively, all p < 0.01) (Fig. 2D). Considering the 
potential bridging role of neoantigens in the genomic and 
TCR repertoire alterations, we calculated the correlation of 
neoantigens with the genomic and TCR indices. There were 
no correlations between neoantigen with the common indi-
ces of TCR (all p > 0.05). However, an increased number 
of neoantigens may result in stronger TCR/pMHC binding 
(r = 0.92, p < 0.01) (Fig. 4B).

All aforementioned significant genomic signatures 
were also investigated. High TMB and TMB-SNV were 
significant factors leading to neoantigens (both r = 0.99, 
p < 0.001) (Fig. 4B). COSMIC-SBS-384–1 (p = 0.047) and 
De novo-SV-32-A (p = 0.001) were positively associated 

Fig. 4   Genomic and TCR repertoire’s features associated with neoan-
tigens. A Kaplan––Meier curves of 92 GEJAC patients’ 5-year sur-
vival according to the expression of predicted neoantigens. B A cor-
relation matrix in which the type and depth of coloring were used to 
highlight the positive (blue) or negative (red) Spearman correlation 
coefficient between genomic changes and TCR repertoire’s features. 
C-D Box plots comparing neoantigen levels in GEJAC samples with 

and without COSMIC-SBS-384–1 (n = 43 and 49, respectively) (c) 
and De novo-SV-32-A (n = 62 and 30, respectively) (d). E Kaplan–
Meier curves of 92 GEJAC patients’ 5-year survival according to 
the expression of chromothripsis. F Box plots comparing neoantigen 
expression in GEJAC samples with and without MSI (n = 18 and 74, 
respectively). *p < 0.05, **p < 0.01
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with neoantigens (Fig. 4C-D). There was a significant cor-
relation between the 5-year survival rate and chromothrip-
sis (p = 0.032) (Fig. 4E), but not with microsatellite insta-
bility (MSI) (p = 0.12) (Figure S9G). However, high MSI 
was closely related to high neoantigen levels (p = 0.004) 
(Fig. 4F). Chromothripsis tends to result in more predicted 
neoantigens (Figure S9H). These findings indicate that the 
high level of TMB, COSMIC-SBS-384–1, De novo-SV-
32-A, and MSI lead to the generation of more neoantigens 
and stronger TCR/pMHC binding.

The immune deserted subtype exhibited an earlier 
occurrence of KRAS mutations in evolutionary 
history of GEJAC.

To our knowledge, this is the first study to estimate the 
order [16] of acquisition of recurrent genomic aberrations, 
including somatic copy-number alterations (SCNAs), whole-
genome doubling (WGD), and common cancer driver genes 
within each of the subtypes of GEJAC. In IM and IF sub-
types, mutations in the driver genes TP53, PIK3CA, and 
ARID1A were generally early and high frequency (> 10%) 
events, occurring before WGD (Fig. 5A-B). Compared to 
the IF and IM subtypes, the appearance of TP53 mutations 
occurred later in the ID subtype, while the time of WGD 
occurrence was much earlier. In the ID subtype, the earliest 
mutation driver gene event was KRAS. (Fig. 5C). The copy-
number drivers in the IM and IF subtypes were balanced 

between gains and loss of heterozygosity (LOH), whereas 
early events of the ID subtype were dominated by LOH. The 
loss of 9q, which was specific in the ID subtype, was a rela-
tively early event and resulted in a worse survival outcome 
(Fig. 5C, S6C).

Tumor immune microenvironment and biological 
characteristics in the three subtypes.

To explore the association between the molecular classi-
fication and tumor biology process, we next deconvoluted 
the RNA sequencing data of 53 GEJAC patients to infer 
GSEA pathway analysis and the immune microenvironment, 
including 28 infiltrating immune cell types and the expres-
sion of 20 immune-related genes [17]. Compared with the 
ID subtype, both the IM and IF subtypes showed a higher 
abundance of γδT cells and lower abundance of Th17 cells 
(all p < 0.05) (Fig. 6A, S10A-B). Meanwhile, the IF subtype 
tended to be enriched with higher activated dendritic cells 
(IF vs. ID, p = 0.030) and CD8+ T (IF vs. ID, p = 0.090) 
cells infiltration compared with the ID subtype, suggest-
ing an active or “hot” immune microenvironment (Fig. 6A, 
S10C-D).

We then investigated the expression differences of 
20 immune checkpoint genes [17]. The expression of 
PD-L1 was significantly higher in the IF subtype than 
in the IM and ID subtypes (IF vs. IM, p = 0.009; IF vs. 
ID, p = 0.00075) (Fig.  6B). We also found the higher 

Fig. 5   Diagrams of estimated ordering of significant SCNAs (includ-
ing chromosome gains/losses and mutations) relative to WGD in 3 
subtypes. The size of violin plots indicates the uncertainty of tim-
ing for specific events across all samples. The short black solid 
lines denote the median time. The vertical solid red line represents 

the median time for WGD events. Events with odds greater than 10, 
occurring earlier or later, are depicted with vertical solid lines in 
green or purple. The histogram on the right displays the prevalence of 
each event in the cohort
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expression of LAG3 in the IF subtype than in the IM sub-
type (p = 0.024) (Figure S10E). Compared to samples in 
the ID subtype, our immunohistochemistry analysis also 
revealed a significant increase in CD8+ T cells abundance 

in the IM and IF subtypes, but not in CD3+ or CD4+ T cells 
(Fig. 6C-D, S11A-D). This observation may partly explain 
why the patients with the ID subtype had worse immune 
reactions and prognosis.

Fig. 6   Transcriptomics analysis of the 3 subtypes. A Heatmap show-
ing the normalized enrichment score of tumor-infiltrating immune 
cell types across the three subgroups. On the right, significant differ-
ences in the quantity of infiltrating cell types among the 3 subgroups 
are indicated with an asterisk (* or **). B Box plots comparing the 
mRNA expression level of PD-L1 among the 3 subtypes. C) The pro-
portions of CD8+ T cells in intratumor or stromal tissues separately 
among the 3 subtypes. D) Positive or negative examples of anti-CD8 

staining in the IF or ID group patients (X200, positive cells are dis-
played in brown). E Volcano plot showing differences in gene mRNA 
expression levels among the 3 subtypes. Dots above the horizontal 
line indicate upregulated genes (log2(fold change) > 0), and Dots 
under the horizontal line indicate downregulated genes (log2(fold 
change) < 0). F Gene set enrichment analysis was performed across 
the three subtypes. Differences for all pathways among the 3 subtypes 
were statistically significant. *p < 0.05.**p < 0.001
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We identified genes that were differentially expression 
among the 3 subtypes. Among the overlapping genes, the 
expression of genes (XIST, ALPG, MAEL, CHGB) in the IM 
subtype were more than tenfold higher than that in the IF 
and ID subtypes (Fig. 6E). In the IF subtype, we also identi-
fied tenfold highly expressed genes (DSG1, CRCT1, TGM3, 
SPRR2B, SPRR2E, and SPRR2F) compared to the other 
two subtypes (Fig. 6E). To further understand the biologi-
cal features of each subtype, we compared gene expression 
with respect to a set of significant pathways. The pancreas 
beta cell pathway and Wnt/β-catenin related pathway were 
significantly upregulated in the IM subtype (all p < 0.05) 
(Fig. 6F). When compared with the IM and ID subtypes, the 
IF subtype was characterized by IFN-α and IFN-γ response 
pathways (all p < 0.05) (Fig. 6F). Meanwhile, the ID subtype 
displayed a significant enrichment of classical oncogenic 
pathways (KRAS, PI3K–AKT–mTOR, and cell cycle-
related pathways) (all p < 0.05) (Fig. 6F). The characteris-
tics of IF and ID subtypes were also validated in an addi-
tional 124 patients GEJAC cohort [5] (Figure S12A-F). The 
prognostic value of identified signatures was investigated in 
esophageal and gastric cancers using data from the TCGA 
database (Figure S13-14). More details were described in 
the supplementary data file.

Discussion

There is a lack of useful biomarkers for guiding treatment 
selection and predicting prognosis. We performed a multi-
omics study on a large cohort of GEJAC patients. And this is 
the largest TCR sequencing analysis study of GEJAC. Utiliz-
ing COSMIC nomenclature and the de novo method, we first 
identified 7 novel genomic mutation and structural alteration 
signatures. We then classified GEJAC into three molecular 
subtypes. The three subtypes were distinguished by distinct 
dominant genomic alterations, tumor immune responses, 
and prognostic differences, highlighting their potential for 
personalized therapy. The mutational signatures influencing 
prognosis in GEJAC were either undetectable in esophageal 
or gastric cancers or had no impact on their survival. This 
highlights the distinct molecular characteristics of GEJAC, 
aligning with findings from previous studies [3, 4].

TMB has been widely explored as an effective biomarker 
for describing tumor status, response to ICIs and survival [18]. 
A higher TMB increases the probability of tumor neoantigen 
production and, therefore, the likelihood of immune recogni-
tion and tumor cell killing [19]. For the burden of mutational 
insertions and deletions (TMB-InDel), it has the potential to 
engender novel neoantigens that are more immunogenic [20]. 
The prognostic significance of TMB may vary by tumor type. 
In esophageal cancer, high TMB is linked to poor prognosis, 
while in GEJAC and gastric cancer, high TMB is associated 

with better outcomes. We found that 42.4% of patients (IF 
group) exhibited high TMB (both TMB-SNV and TMB-
InDel), a high neoantigen load, as well as high CNV burden, 
MSI, and chromothripsis. Recent study indicated that over-
all outcomes with anti-PD-1-based therapies are favorable in 
MSI-high tumors [21, 22]. Frequent genomic alterations in 
the IF subtype exposed more neoantigens, promoted stronger 
immune recognition and response, and exhibited the best sur-
vival. We also found high expression of immune checkpoints, 
such as PD-L1 and LAG3, in the IF subtype, which reveals that 
this IF might benefit most from checkpoint blockade therapy.

The IM subtype also exhibited a high frequency of CNV 
burden, MSI, and chromothripsis and γδT cells, along with 
a significantly increased high clone number and diversity of 
TCR clones, which might activate the immune response and 
enable the IM subtype to benefit from checkpoint blockade 
therapy [23–26]. However, possibly due to lower levels of 
TMB, TMB-SNV, and TMB-InDel, the IM subtype had a rel-
atively low neoantigen count and survival time compared to 
the IF subtype. The IM subtype was characterized by deletion 
of DP17q12 (containing ERBB2 gene) with low expression 
of ERBB2. It may not benefit from trastuzumab therapy, but 
this type was also suitable for immune therapy. Moreover, we 
identified the unique highly expressed genes in the IM sub-
type, such as MEAL, which promoted colon and hepatocellular 
cancer cell stemness and drug resistance [27, 28], indicating a 
potential therapeutic target.

The ID subtype in this study could be classified as a “cold 
tumor” [29], characterized by the lowest neoantigen exposure, 
weakest immune reaction and poorest prognosis. Due to low 
TMB [25], MSI [26], and immune checkpoint genes expres-
sion [30], these patients may not benefit from immunotherapy. 
However, KRAS mutations and WGD were earlier event in 
the ID subtype. Somatic activating or gain-of-function KRAS 
mutations are usually observed in many tumors and regulate 
downstream signaling cascades of pathways such as PI3K and 
MAPK [31, 32]. We observed upregulation of the KRAS and 
PI3K-AKT-mTOR pathway in the ID subtype in our and an 
additional cohort. Targeting the KRAS and PI3K-mTOR sign-
aling pathways may be promising therapeutic options for this 
type. Due to our limited sample size and the occurrence of 
certain low-frequency mutational events, the generalizability 
of our findings on prognostic associations may be limited. Due 
to the unavailability of whole WGS data from the additional 
cohort, it is not feasible to completely validate our classifica-
tion model, which may be also a limitation for our study.

Conclusions

Our T-cell receptor repertoire-based multi-omics analysis of 
a large cohort of GEJAC cases provides a better understand-
ing of novel molecular signatures related to prognosis and 
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leads to molecular classification into three subtypes. The 
statuses of TMB-SNV and TMB-InDel are useful implica-
tions for stratification. In each subtype, we found potential 
therapeutic targets and specific molecular characteristics. 
Our results contribute to the understanding of the molecular 
landscape of GEJAC and provide a strong starting point for 
performing meaningful clinical trials.

Materials and methods

Patient samples

We prospectively collected 92 patients with gastroesoph-
ageal junction adenocarcinoma from 2010 to 2015 at the 
Tianjin Medical University Cancer Institute & Hospital. All 
patients did not receive preoperative treatment and under-
went curative R0 surgery. After curative resection, GEJAC 
patients received systematic fluoropyrimidine-based chemo-
therapy and regular follow-up. Three public data sets were 
analyzed. We collected multi-omics data: somatic mutation 
data of Lin[5] and data from EMBL (PRJEB41070), and 
the expression data from NCBI (GSE159721). The somatic 
mutation data from cBioPortal were also used to verify our 
results.

Whole‑genome sequencing and data processing

Whole-genome sequencing and data processing were per-
formed as described previously[33]. The WGS libraries were 
constructed from 92 primary tumors and their paired normal 
samples according to the manufacturer’s instructions for the 
MGIEasy FS DNA Library Prep Set (cat. 1,000,006,987; 
MGI, China). The libraries were sequenced on a DNBSEQ 
platform (BGI, Shenzhen) and 100-bp paired-end sequenc-
ing was performed to yield data of ≥ 100 × read coverage for 
all samples. During WGS data pre-processing, low-quality 
reads and adaptor sequences were removed by SOAPnuke 
(v2.0.7)[34]. Sentieon Genomics software was used to map 
and process high-quality reads for downstream analysis[35].

Somatic short variant calling was performed as described 
previously[33]. Putative somatic SNVs, MNVs, and/or 
InDels were identified in each tumor-normal pair using 
multiple accelerated tools (TNhaplotyper, corresponding to 
MuTect2[36] of GATK3; TNhaplotyper2, corresponding to 
MuTect2 of GATK4; TNsnv, corresponding to MuTect[37]) 
and TNscop[38] of Sentieon Genomics software (version: 
sentieon-genomics-202010). Somatic CNVs were detected 
using the Copy-Number Variant caller of Sentieon Genom-
ics software (version: sentieon-genomics-202010), and 
ascatNgs[39] (version: v4.5). Somatic SVs were detected in 
each paired normal-tumor sample by TNscope.

Identification of potential driver genes 
and mutational signatures

We used dNdScv (v0.0.1.0) [40], MutSigCV(v1.41) (http://​
www.​broad​insti​tute.​org/​cancer/​cga/​mutsig), MutSig2CV 
[41], and CGI(Cancer Genome Interpreter) [42] to identify 
genes with significantly recurrent coding-sequence SNVs/
InDels/CNVs.

Analyses of mutational signatures were performed by 
SigProfilerExtraction [43] (version v1.1.4) with the param-
eters-reference_genome GRCh37-opportunity_genome 
GRCh37-minimum_signatures 1-maximum_signatures 
40-nmf_replicates 500-cpu12-gpu True-cosmic_version 
3.2. SigProfilerExtraction consists of two processes: de novo 
signature extraction and signature assignment [44, 45]. Hier-
archical de novo extraction of SBS, DBS, and ID signatures 
from all samples was followed by estimation of the optimal 
solution (number of signatures) based on the stability and 
accuracy of all solutions. After identifying the signatures, 
their activities were estimated by calculating the number 
of mutations assigned to each sample. SigProfilerExtraction 
also decomposed de novo signatures to the COSMIC signa-
ture database (version 3.2) [46].

RNA sequencing and data processing

Pre-processing of RNA-seq data, including removal of low-
quality reads and rRNA reads, was carried out using Ribo-
Detector [47] and Cutadapt [48]. Clean sequencing data 
were mapped to human reference GRCh37 using STAR 
[49]. DESeq [50] was used to detect the differential expres-
sion genes with threshold of log2 fold changes ≥ 1 and P 
value < 0.05. We also employed a method called Gene Set 
Variation Analysis (GSVA) [51] to calculate gene set or 
pathway scores on a per-sample basis. GSVA transforms a 
gene by sample gene expression matrix into a gene set by 
sample pathway enrichment matrix. We made a heatmap of 
the enrichment matrix, and we used the GSVA scores for a 
number of other downstream analyses such as differential 
expression analysis.

TCR‑sequence library preparation and sequencing

Genomic DNA from peripheral blood, tumor-adjacent 
tissues, and tumor tissues was extracted and analyzed for 
TCR-seq as previously described [52]. Briefly, we used the 
Multiplex PCR (MPCR) primers, which includes 30 forward 
V primers and 13 reverse J primers, to amplify the rear-
ranged CDR3 regions of TCRs. Libraries with insert sizes of 
200-–300 bp were analyzed using a Bioanalyzer, and 200 bp 
single-end sequencing was performed on a BGISEQ-500 
platform (MGI Tech Co., Ltd.) following the manufacturer's 
protocol.

http://www.broadinstitute.org/cancer/cga/mutsig
http://www.broadinstitute.org/cancer/cga/mutsig
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In our TCR data, IMonitor [53] was used to analyze TCR 
sequencing data as described previously [52]. We utilized 
the VDJtools [54] to calculate the diversity, richness, even-
ness, gini coefficient index, and Morisita-Horn index of 
T-cell receptors [24, 55, 56].

Prediction of tumor neoantigens

OptiType (v1.3.5) [57] and Polysolver (v1.0) [58] tools were 
used for HLA typing calculation and analysis in this study. 
The results obtained from the two tools’ algorithm were 
merged. Neoantigens were predicted by NetMHC (v4.0) [59] 
and NetMHCpan (v4.1) [60].

TCR‑peptide binding strength prediction

We used ERGO-II(Extended TCR-Peptide Binding Predic-
tor) [15], which is a deep learning based method for predict-
ing TCR and epitope peptide binding. Note that due to the 
model size, ERGO-II includes here only two models, one 
for the McPAS database and one for VDJdb. We used the 
VDJdb database, and we deemed ERGO score above 0.95 is 
reliable as positive binding in most cases.

Molecular typing

For the subtypes’ analysis, we combined all identified 
genomic features which were significantly associated with 
5-year survival. Tally 19 features are PI3K pathway mutation 
status, amplification of MDM2, focal CNV burden, ampli-
fication of 5p13.1, deletion of 17q12, deletion of 9q22.33, 
COSMIC-SBS-384 − 1, COSMIC-SBS-384 − 7, De novo-
DBS-78 − D, De novo-CNV48 − A, De novo-SV-32 − 0, De 
novo-SV-32 − E, COSMIC-ID-83 − 9, TMB, TMB-SNV, 
TMB-InDel, Neoantigen, Chromothripsis, and MSI status. 
Considering the different variable type, we dichotomized 
PI3K pathway mutation status, amplification of MDM2, 
amplification of 5p13.1, deletion of 17q12, deletion of 
9q22.33, COSMIC-SBS-384 − 1, COSMIC-SBS-384 − 7, 
De novo-DBS-78 − D, De novo-CNV48 − A, De novo-
SV-32 − 0, De novo-SV-32 − E, and COSMIC-ID-83 − 9 into 
present/absent (the cut-off value of those 12 features were 
zero). We also dichotomized 5 features into high/low accord-
ing to those best cut-off value for impacting survival. The 
thresholds of focal CNV burden, TMB, TMB-SNV, TMB-
InDel, and neoantigen were 348, 2.92, 4.08, 0.28, and 547, 
respectively. Once all the 19 features were binarized, we 
constructed a matrix of samples using the R Package MOV-
ICS [61] for multi-omics integration and visualization in 
cancer subtyping.

Inference of clonal structure and phylogenetic 
relationship

We demonstrate the use of PhylogicNDT [62] by apply-
ing it to whole-genome data of 92 samples. Single patient 
timing and the event timing in the cohort were inferred 
using PhylogicNDT LeagueModel. We identify signifi-
cantly different progression trajectories across subtypes 
of gastroesophageal junction adenocarcinoma.

Statistical analysis

We used Chi-square or Fisher’s exact test for any inde-
pendence test between two categorical variables and Wil-
coxon rank-sum test for any independence test between 
a continuous variable and a binary categorical variable, 
when there was no covariate to adjust for. Pearson’s rank 
correlation coefficient was used to measure the correla-
tion between two continuous variables. Survival curves 
were plotted by Kaplan–Meier method. A P value < 0.05 
was considered to indicate statistical significance. Data 
analysis and plot generation were performed in R (ver-
sion 4.2.3).
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